Addendum to Chaganty & Joe (2006), Biometrika, pp. 197-206

Proof of Theorem 1 (iii). We will prove the result for any $d \geq 3$.

Theorem. Let $y = (y_1, \ldots, y_d)$ be a binary vector with mean $p = (p_1, \ldots, p_d) \in (0, 1)^d$, and a structured correlation matrix R. If the structure of R is AR(1) with parameter ρ , then a joint distribution for y exists if and only if

$$\max_{1 \le i \le (d-1)} L(p_i, p_{i+1}) \le \rho \le \min_{1 \le i \le (d-1)} U(p_i, p_{i+1}), \tag{A2}$$

where L(a, b) and U(a, b) are as defined on page 198 in Chaganty and Joe (2006).

Proof. The necessity is obvious. Sufficiency follows from the results in Qaqish (Biometrika, 2003, pp. 455-463). It is easy to check that if (A2) holds then λ_i given by (6) in Qaqish (2003, p. 458) will lie in the interval [0, 1] for i = 2, ..., d. Hence there exists a joint distribution for $y = (y_1, ..., y_d)$ in the conditional linear family.

A direct argument for the sufficiency is based on Markov chains of order 1 for binary time series discussed in Joe (1997, pp. 246-248). Let $q_i = 1 - p_i$ and $\sigma_i = (p_i q_i)^{1/2}$. Assume that (A2) holds. Then

$$H_{i} = \begin{bmatrix} 0 & 1 \\ q_{i+1} + \rho \frac{\sigma_{i}\sigma_{i+1}}{q_{i}} & p_{i+1} - \rho \frac{\sigma_{i}\sigma_{i+1}}{q_{i}} \\ q_{i+1} - \rho \frac{\sigma_{i}\sigma_{i+1}}{p_{i}} & p_{i+1} + \rho \frac{\sigma_{i}\sigma_{i+1}}{p_{i}} \end{bmatrix} \quad 0 \quad y_{i}$$

is a transition matrix for $i=1,2,\ldots,(d-1)$. We can construct a joint distribution for $y=(y_1,\ldots,y_d)$ explicitly using a first order Markov chain. Let y_1 be Bernoulli with mean p_1 . For $i\geq 1$, assume that the transition from y_i to y_{i+1} is governed by the transition matrix H_i . It is easy to check that the marginal of y_i is Bernoulli with mean p_i , and $\operatorname{Corr}(y_i,y_j)=\rho^{|i-j|}$ for all $1\leq i, j\leq d$.

Note that, in the above, the joint distributions for $y = (y_1, \ldots, y_d)$ obtained by the conditional linear family and by the first order Markov chain, are identical.