Appendix 1

Example where the working correlation is infeasible for binary responses
The covariates are same as those in Liang and Zeger (1986).

		Repeated measurements				
Subject		time1	time2	time3	time4	time5
1	binary response(y)	1	1	1	1	0
	covariate (x)	0.2	0.4	0.6	0.8	1
2	binary response(y)	1	0	0	0	0
	covariate (x)	0.2	0.4	0.6	8.0	1
3	binary response(y)	1	1	1	1	0
	covariate (x)	0.2	0.4	0.6	8.0	1
4	binary response(y)	1	0	0	0	0
	covariate (x)	0.2	0.4	0.6	8.0	1
5	binary response(y)	1	1	1	1	0
	covariate (x)	0.2	0.4	0.6	8.0	1
6	binary response(y)	1	1	1	1	0
	covariate (x)	0.2	0.4	0.6	8.0	1
7	binary response(y)	0	0	0	0	0
	covariate (x)	0.2	0.4	0.6	8.0	1
8	binary response(y)	1	1	1	1	0
	covariate (x)	0.2	0.4	0.6	8.0	1
9	binary response(y)	1	1	1	1	0
	covariate (x)	0.2	0.4	0.6	8.0	1
10	binary response(y)	0	0	0	0	0
	covariate (x)	0.2	0.4	0.6	8.0	1
11	binary response(y)	1	1	1	1	0
	covariate (x)	0.2	0.4	0.6	8.0	1
12	binary response(y)	1	1	1	1	0
	covariate (x)	0.2	0.4	0.6	8.0	1
13	binary response(y)	1	1	1	1	0
	covariate (x)	0.2	0.4	0.6	8.0	1
14	binary response(y)	1	1	1	1	0
	covariate (x)	0.2	0.4	0.6	8.0	1
15	binary response(y)	1	1	1	1	0
	covariate (x)	0.2	0.4	0.6	0.8	1

Logit Model: logit (E(y)) = b0 + b1*x

GEE Estimates: PROC GENMOD in SAS: b0= 3.9036, b1= --4.6380. Compound symmetry working correlation estimate of rho=0.4906,

wheras feasible interval for rho is [-0.0811, 0.1564].

Probit Model: $E(y) = \Phi(b0+b1^*x)$, where Φ is the standard normal cdf

GEE Estimates: PROC GENMOD in SAS: b0=2.0673, b1= --2.6165. Compound symmetry working correlation estimate of rho=0.4673,

whereas feasible interval for rho is [-0.1089, 0.1639].

In both cases the working correlation is outside the feasible region, and thus some bivariate probabilities will be negative.

Appendix 2

LEMMA 1. Let $\Sigma_{n\times n}$ be positive definite and $D_{n\times p}$ be of rank p. Then

$$\Sigma - D(D'\Sigma^{-1}D)^{-1}D'$$

is nonnegative definite.

Proof: Let Y be a random vector such that $Cov(Y) = \Sigma$ and let $\hat{Y} = D(D'\Sigma^{-1}D)^{-1}D'\Sigma^{-1}Y$. We can check that $Cov(\hat{Y}, Y) = Cov(\hat{Y}) = D(D'\Sigma^{-1}D)^{-1}D'$. Hence,

$$Cov(Y - \hat{Y}) = Cov(Y) - Cov(\hat{Y}) = \Sigma - D(D'\Sigma^{-1}D)^{-1}D'$$

is nonnegative definite. \Box

LEMMA 2. For any matrix $B_{n \times p}$ of rank p we have

$$(B'D)^{-1} B'\Sigma B (D'B)^{-1} - (D'\Sigma^{-1}D)^{-1}$$

is nonnegative definite.

Proof: Suffices to show

$$B'\Sigma B - B'D(D'\Sigma^{-1}D)^{-1}D'B$$

is nonnegative definite, which follows from Lemma 1. \Box

LEMMA 3. Let B_i , D_i , $1 \le i \le m$, be $t \times p$ matrices. Let $\Sigma_1, \ldots, \Sigma_m$ be $t \times t$ positive definite matrices. Then

$$\left(\sum_{i=1}^{m} B_i' D_i\right)^{-1} \left(\sum_{i=1}^{m} B_i' \Sigma_i B_i\right) \left(\sum_{i=1}^{m} D_i' B_i\right)^{-1} - \left(\sum_{i=1}^{m} D_i' \Sigma_i^{-1} D_i\right)^{-1}$$

is nonnegative definite, assuming that the inverses exist.

Proof: Take $B' = (B'_1 \ B'_2 \ \dots B'_m); \ D' = (D'_1 \ D'_2 \ \dots D'_m)$ and $\Sigma = \operatorname{diag}(\Sigma_1, \dots, \Sigma_m)$. Note that

$$B'D = \sum_{i=1}^{m} B'_i D_i$$

$$B'\Sigma B = \sum_{i=1}^{m} B'_i \Sigma_i B_i$$

$$D'\Sigma^{-1}D = \sum_{i=1}^{m} D'_i \Sigma_i^{-1} D_i$$

and thus Lemma 3 follows from Lemma 2. \square