Corrections to Chaganty (2003), JSPI, pp. 123-139.

1. Page 131, lines 8-11 should read:

It is interesting to note that the Eq. (20) resembles the optimal unbiased estimating equation in the sense of Godambe (1960) for estimating the correlation parameter α , because under the normality assumption we have $E(vec(\overline{\mathbf{U}})) = \sigma^2 vec(\mathbf{R}(\alpha))$ and

$$\operatorname{Cov}(\operatorname{vec}(\overline{\mathbf{U}})) = (\sigma^4/n) \left(\mathbf{I}_{p^2} + \mathbf{I}_{(p,p)} \right) \mathbf{R}(\alpha) \otimes \mathbf{R}(\alpha).$$

2. Page 138, Eq. (A.1) should be

$$vec(\overline{\mathbf{U}}) is N\left(\sigma^2 vec(\mathbf{R}(\alpha)), \frac{\sigma^4(\mathbf{I}_{p^2} + \mathbf{I}_{(p,p)})\mathbf{R}(\alpha) \otimes \mathbf{R}(\alpha)}{n}\right)$$
 (A.1)

where \mathbf{I}_{p^2} is the identity matrix of order $p^2 \times p^2$, and $\mathbf{I}_{(p,p)}$ is the permuted identity matrix of order $p^2 \times p^2$ given by

$$\mathbf{I}_{(p,p)} = \begin{pmatrix} E'_{11} & \cdots & E'_{1p} \\ \vdots & \cdots & \vdots \\ E'_{p1} & \cdots & E'_{pp} \end{pmatrix}$$

where E_{jk} is a $p \times p$ matrix of zeros except for the (j, k)th element which equals one. See (1.5.24) of Vonesh and Chinchilli (1997, p. 22).